Logic statements and cbind in R
Logic statements can be used obtain values as TRUE/FALSE and 0/1 for categorical values. With cbind we can add columns. This page is part of My notes on R programming.
Read in data
# Read in data via read_excel
library(readxl)
LungCapData <- read_excel(“C:/Users/Usuario/Documents/dataZ4s/R/MarinLectures/LungCapData.xlsx”,
col_types = c(“numeric”, “numeric”, “numeric”,
“text”, “text”, “text”))
# R reads in Smoke, Gender and Caesarean as “text”. Needs change to “factor”
# Change Smoke, Gender and Caesarean to factors with as.factor() command
LungCapData$Smoke <- as.factor(LungCapData$Smoke)
LungCapData$Gender <- as.factor(LungCapData$Gender)
LungCapData$Caesarean <- as.factor(LungCapData$Caesarean)
# attach(LungCapData)
attach(LungCapData)
Checking
# Checking names
head(LungCapData)
## # A tibble: 6 x 6
## LungCap Age Height Smoke Gender Caesarean
## <dbl> <dbl> <dbl> <fct> <fct> <fct>
## 1 6.48 6 62.1 no male no
## 2 10.1 18 74.7 yes female no
## 3 9.55 16 69.7 no female yes
## 4 11.1 14 71 no male no
## 5 4.8 5 56.9 no male no
## 6 6.22 11 58.7 no female no
Age[1:5]
## [1] 6 18 16 14 5
Logic statements as TRUE/FALSE and 0/1
# Is the age more than 14
# Shown by TRUE/FALSE
# 2nd, 3rd and 9th rows are > 14
temp <- Age>14
temp[1:10]
## [1] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
# Replacing TRUE/FALSE with 0/1
# Change to numeric with as.numeric command
temp2 <- as.numeric(Age>15)
temp2[1:10]
## [1] 0 1 1 0 0 0 0 0 0 0
cbind to add column
# View the first 10 rows
LungCapData[1:10, ]
## # A tibble: 10 x 6
## LungCap Age Height Smoke Gender Caesarean
## <dbl> <dbl> <dbl> <fct> <fct> <fct>
## 1 6.48 6 62.1 no male no
## 2 10.1 18 74.7 yes female no
## 3 9.55 16 69.7 no female yes
## 4 11.1 14 71 no male no
## 5 4.8 5 56.9 no male no
## 6 6.22 11 58.7 no female no
## 7 4.95 8 63.3 no male yes
## 8 7.32 11 70.4 no male no
## 9 8.88 15 70.5 no male no
## 10 6.8 11 59.2 no male no
# Having Gender and Smoke returned as logic statements
FemSmoke <- Gender==”female” & Smoke==”yes”
FemSmoke[1:10]
## [1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
# Adding column with cbind
# Add column with TRUE/FALSE
ExtraColumn <- cbind(LungCapData, FemSmoke)
ExtraColumn[1:10, ]
## LungCap Age Height Smoke Gender Caesarean FemSmoke
## 1 6.475 6 62.1 no male no FALSE
## 2 10.125 18 74.7 yes female no TRUE
## 3 9.550 16 69.7 no female yes FALSE
## 4 11.125 14 71.0 no male no FALSE
## 5 4.800 5 56.9 no male no FALSE
## 6 6.225 11 58.7 no female no FALSE
## 7 4.950 8 63.3 no male yes FALSE
## 8 7.325 11 70.4 no male no FALSE
## 9 8.875 15 70.5 no male no FALSE
## 10 6.800 11 59.2 no male no FALSE
This page is a run through of Statslectures with Mick Marin on his video ‘Logic Statements…’. View this page in my site: https://dataz4s.com/r-statistical-programming/logic-statements-cbind-r/

Carsten Grube
Freelance Data Analyst
Normal distribution
Confidence intervals
Simple linear regression, fundamentals
Two-sample inference
ANOVA & the F-distribution

+34 616 71 29 85
Call me

Spain: Ctra. 404, km 2, 29100 Coín, Malaga
...........
Denmark: c/o Musvitvej 4, 3660 Stenløse
Drop me a line
What are you working on just now? Can I help you, and can you help me?
About me
Learning statistics. Doing statistics. Freelance since 2005. Dane. Living in Spain. With my Spanish wife and two children.
Connect with me
What they say
20 years in sales, analysis, journalism and startups. See what my customers and partners say about me.
0 Comments